Thursday, 13 November 2014

Press release: LAUNCH OF THE NEW PHYSICS HIGH-THROUGHPUT ELECTRONICS LABORATORY

MEDIA INVITATION FOR PR NEWSWIRE FROM CLIENT WITS UNIVERSITY

ATTENTION: NEWS EDITORS AND SCIENCE REPORTERS

DATE: THURSDAY, 13 NOVEMBER 2014

LAUNCH OF THE NEW PHYSICS HIGH-THROUGHPUT ELECTRONICS LABORATORY

The Wits School of Physics invites all media to the launch of the High-Throughput Electronics Laboratory (HTEL) this Friday, 14 November 2014.
This state-of-the-art new lab and facilities at Wits will be a platform for research and development of high-throughput electronics for the ATLAS detector at the Large Hadron Collider (LHC) at the European Organization of Nuclear Research (CERN). The laboratory is designed to deal with the Big Data problem related to the processing of large amounts of data needed to produce new discoveries, following the observation of the Higgs boson at the LHC.
This work would lead to the massive production of electronic devices by South African industry based on the designs developed at the High-Throughput Electronics Laboratory (HTEL).
Date: Friday, 14 November 2014
Time:  09:30 for 10:00
Venue:  P213 (Honours Presentation Room), School of Physics, Physics Building, Braamfontein Campus East
RSVP: Christina Thinane on 011 717 6848 or Christina.Thinane@wits.ac.za
All media are invited.

About the HTEL:
High-throughput electronics deals with the huge transfer of data at very high rates in challenging environments, such as those with a high level of radiation, possibly event upsets and other factors that may produce data corruption. To “read” this data, very fast decisions need to be made in order to select and modify the large amounts of data at high rates.
This laboratory will first of all serve the needs for upgrade of the ATLAS detector and more specifically, the Tile Calorimeter. This ATLAS sub-detector enjoys strong commonalities in the way data is transferred and how the off-detector electronics are designed.
But it is not only ATLAS that will benefit. South Africa’s flagship big science project, the SKA, also faces the same technological challenges related to high-throughput data flows with fast processing common to that of the ATLAS detector. Prototypes of fast-electronics and computing developed for the ATLAS detector could also be used by the SKA.
A spin-off of the design and prototyping work being done for the ATLAS project is the development of the Massive Affordable Computing (MAC) project. One of the limiting factors for harnessing large computing capabilities is the cost: High-performance computers are not cost-effective and need to be imported to the country. The idea behind this project is to develop prototypes for high-performance computing with cost-effective components for a very wide range of applications in research and industry. 
A first spin-off of the HTEL is the development of a mini-PC, catering to the needs of the educational system of South Africa. Few prototypes are currently available and are being tested at the HTEL. These incorporate power efficient and low-cost technologies. A number of these prototypes will be deployed to schools and universities in January-February for feedback. These mini-PCs could be manufactured in South Africa in quantities large enough to accommodate the needs of the educational system of the country.
Ends
Issued by:
Erna van Wyk
Multimedia Communications Officer | Wits Communications 
University of the Witwatersrand
Contacts: +27 11 717 4023 

No comments:

Post a comment